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The academic journey to a widely acknowledged Machine Consciousness is anticipated to be an

emotional one. Both in terms of the active debate provoked by the subject and a hypothesized

need to encapsulate an analogue of emotions in an arti¯cial system in order to progress towards
machine consciousness. This paper considers the inspiration that the concepts related to emotion

may contribute to cognitive systems when approaching conscious-like behavior. Speci¯cally,

emotions can set goals including balancing explore versus exploit, facilitate action in unknown
domains and modify existing behaviors, which are explored in cognitive robotics experiments.

Keywords: Arti¯cial emotions; learning classi¯er systems; cognitive robotics; a®ective comput-
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1. Introduction

It may be argued that evolution has led to consciousness in human beings. However,

this process has taken millennia, which is not desirable when attempting to create

arti¯cial conscious-like behaviors. Thus, rather than start with a tabula rasa, it may

be preferable to start with analogues of evolved human traits in an attempt to speed-

up the creation of useful behaviors, e.g., emotions [Fellous and Arbib, 2005; Vallverdú
and Casacuberta, 2009].

Emotions are developmental, i.e., only some emotions are present at birth, by nine

months all basic emotions are present, self-awareness emotions (e.g., embarrass-

ment), 18�24 months, and evaluated emotions (guilt) develop by 2�3 years. This

trade-o® between nature and nurture of arti¯cial emotions for cognitive (leading to

conscious) robotics invites exploration with initial investigations outlined in this

paper. Firstly, is the nature of arti¯cial emotions useful to a robot, such that it

provides functionality not easily obtained by other means? Secondly, can emotions be

tuned by nurture through interaction with a given environment in order to improve

their usefulness to an agent?
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A broad overview of functionality is \Emotions are re°ections of the adaptations

that animals make to universal problems" [Plutchik, 1991], where the universal

problems of adaptations are temporality, identity, hierarchy and territoriality.

Feedback from the environment [Breazeal, 2004] is used for both communication

[Breazeal, 2004; Michaud et al., 2001] and control [Arbib and Fellous, 2004; Di Paolo

and Iizuka, 2004; Scheutz, 2004; Takeno et al., 2005]. Fellous concludes that it may

be \… more fruitful to focus on function of emotions not what they are", which is the

focus adopted by this work [Fellous, 2004].

2. Background to Emotions

Theories of emotional functionality are over a hundred years old, including Dar-

win [1871] and James [1884]. More recently, Aleksander and Morton's [2007]

emotional architecture model shows both a®erence and e®erence. Schachter's

cognitive theory model shows e®erence then a®erence [Scherer, 1988]. There is an

important di®erence between a®erence feedback and e®erence signals. Re-experiencing

the emotional context of a state can a®ect the decision taken, so is a form of

emotional feedback (see somatic marker hypothesis [Damasio, 1996]). Similarly,

being in an emotional state biases the decision-making with this signal, then a®ects

the output [Rolls, 1999].

The purpose of emotion is also debated, with a general categorization provided by

[Michaud et al., 2001]:

. to adapt to limitations

. for managing social behavior

. for interpersonal communication

This is not a de¯nitive list as emotion has also been linked to the memory of facts,

which is improved when the facts are learnt in connection with an emotion (to a

limit). Also, there is a strong link between emotion and decision-making and other

frontal lobe cognitive functions, e.g., working memory [Bechara et al., 2000]. Many

alternative viewpoints exist, e.g., [Rolls, 1999; Cahill et al., 1995; Hamann, 2001].

Similar to the di®ering viewpoints on emotional functionality there are varying

types, descriptions and de¯nitions of emotions themselves. A well known classi¯-

cation is by Plutchik [1991] whose classi¯cation is based on purpose:

Temporality: joy/sadness

Identity: acceptance/rejection

Hierarchy: anger/fear

Territoriality: expectation/surprise

Anthropology studies by Ekman [1999] have identi¯ed classes of emotion with

similarities across cultures. The 1972 list of anger, sadness, happiness, fear, disgust,

surprise was expanded with contempt and embarrassment and then rewritten with 15

base emotions in 1999.
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2.1. Existing emotional models

Computational models of emotion exist for both neuro-scienti¯c understanding and

for cognitive robotic control [Kawamura and Browne, 2009] (for standard archi-

tectures see [Kieras and Meyer, 1997; Laird et al., 1987]). In the former class includes

emotional learning in the amygdala [Moren and Balkenius, 2000], which is based on

the Amygdalo-orbitofrontal system expounded by Rolls [1999] and LeDoux [1996].

The balance of inhibitory with excitory signals is important in the simulations

[Shanahan, 2006]. John Taylor's group models the interaction of attention and

emotion, including the enhancement of perception caused by emotional cues

[Fragopanagos et al., 2006].

A bridge between these types is the models of Fellous whose behavioral investi-

gation contains an organization where the potential for emotional control (through

neuro-modulation) increases with higher-level cognition (from re°exes to drives to

instincts to cognitions). Other advice for emotional modeling in cognitive robotics

includes Clark and Grush's promotion of a minimal yet robust internal represen-

tation [Clark and Grush, 1999] and a®ective architectures [Sloman and Chris-

ley, 2005; Sloman and Logan, 1998].

Kawamura et al. [2006] develops the role of episodic memory and emotion for

the cognitive robot ISAC where the emotion component is based on Haikonen's

System Reactions Theory of Emotion (SRTE) [Haikonen, 2003]. The relation

between emotions and system reaction is prede¯ned, e.g., pain due to an external

agent will result in an aggressive response. The DARE architecture [Macas

et al., 2001] again works with the double and parallel stimuli processing concept of

LeDoux plus the somatic marker concept of Damasio. Campagne and Car-

don [2003] approach an emotion model from similar inspiration using a multi-agent

perspective in a massive simulation only.

3. Emotional Inspiration

If robots are to bene¯t from mechanisms that have a similar role to emotions it is

suggested to use internal variables [Michaud et al., 2001]. However, Fellous [2004]

warns that an isolated emotion is simply an engineering hack, i.e., simply describing

a single, isolated internal variable as an emotion could be descriptive or anthro-

pomorphic, but not biologically inspired. Instead, inter-related emotions, expressed

due to resource mobilization with context-dependent computations dependent on

perceived expression is more realistic.

Thus robot-emotions should be built from the following guidelines [Fellous, 2004]:

. emotions are not a separate center that computes a value on some prede¯ned

dimension;

. emotions should not be a result of cognitive evaluation (if state then this emotion);

. emotions are not combinations of some prespeci¯ed basic emotion (emotions are

not independent from each other);
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. emotions should have temporal dynamics and interact with each other;

. system wide control of some of the parameters (of the many ongoing, parallel

processes) that determine the robot behavior.

3.1. Multidimensional and multimodal

There are strong arguments that single production rules cannot work as a basis for

emotional cognitive control, but to dismiss all \if… then…" symbolic systems based

on these arguments appears premature.

To explore some of the arguments against production rules, consider e®erent

emotions where state s1 evokes emotion e. This link may not be derived just from

state to action (a) to reward (r) to emotion s1-a1-r1-e as the episode may have been

s1-a1- s2-a2-s3-a3-s4-a4-r-e or alternative complex sequences. Similarly, it cannot now

be stated that \if s1 then e" as when the next instance of s1 is presented the system

reasons on a®erent as well as e®erence signals s1 and e, which could produce a com-

pletely di®erent action-reward-emotion sequence, e.g., if a need has been satis¯ed.

From Sec. 2 the types of emotions are limited. Each emotion may be considered as

a dimension, which consists of a series of limit cycles from one extreme re°ecting

aversive reward to the other representing appetitive reward. \Negative" emotions are

just as essential for the survival of the agent as \positive" emotions as they help to

avoid aversive states. It is to be decided how these emotional values are changed, but

it is considered that states, actions, rewards and even emotions themselves may

in°uence the emotional level. Although it is wrong to have an isolated production

rule that always says s1-e, it is acceptable to have a production rule that says s1 and e

evokes e 0 and s1-�e, where the evoking and changing of e is not unique to s1.

3.2. A®ectors and e®ectors

A production rule model for emotions could be s and e-a evokes e and�e. This can be

complemented by direct rules, e.g., s1-a or s1-e and can be inhibited by other rules

where these are hardwired or learnt.

Haikonen [2003] identi¯es ¯ve stages of consciousness with Step 3 relevant here.

Emotions are considered to be for attention control, motivation; a shortcut template

for style of action and a®ect learning. Thus selected states invoke emotions and the

totality of emotions corresponds to rewards.

Forward modeling is necessary for cognition with e®erence copies being required

to predict the world. It is considered that emotions are likely to be evoked when the

model and world do not match. It may be considered that the world is its own best

model [Brooks, 1985], but there is still a requirement for an internal model on how

best to use the external model with sensors [Holland, 2003]. The evolutionary com-

putation-based production rule system of Learning Classi¯er Systems (LCS) was

originally proposed by Holland as a cognitive system [Holland, 1975]. Decades of

research have enabled LCS to become an e®ective machine learning technique

[Browne and Tingley, 2006; Lanzi, 2002; Butz, 2004].
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3.3. Generalization, abstraction and anticipations

Learning requires memorization of perceptions from the environment in order to store

useful behaviors.

(i) Irrelevant information from a perceived state must be removed. Attention must

be focused on the important components of the state, which may be accom-

plished through learning generalizations.

(ii) Higher-order patterns must be abstracted from learnt episodes so that rules may

be applied to similar situations.

(iii) Anticipatory models must then be built up linking future states to existing states

with plausible actions.

LCS generalize by denoting irrelevant conditions in a state as \don't care" or by

removing them from the production rule itself. Initial work has shown abstraction is

possible and bene¯cial in appropriate environments [Browne et al., 2008], but further

work is required. This is also true for the determination of a®ordances, which is

assisted by the matching of rules to states by LCS including forward planning.

Anticipatory LCS implementations include ACS, ACSII and AgentP where s-a-s

rules are autonomously formed [Zatuchna, 2005].

3.4. Memory

Many types of memory have been classi¯ed in humans, including short-term, long-

term and working memory [Baxter and Browne, 2008]. However, much debate exists

regarding the underlying biological mechanisms for the observed functional di®er-

ences [Phillips and Noelle, 2005].

The ability to generalize and abstract does reduce the required memory, say

compared with a Q-learning state table. However, to accurately model a practical

world would still require much memory of rules leading to potentially slow searching,

accessing and maintenance. E±cient matching by removing irrelevant conditions

also assists, whilst improved anticipations could enable pre-searching of likely rules

that might be activated in the near future. Importantly, the ability to associate

emotions with rules could greatly reduce the search space, e.g., a sad agent may

ignore many rules associated with joy.

Communication through modeling emotional states facilitates the ability to place

other agents in an \out there" world. By mirroring these rules the agent can then

place itself in the \out there" world too. These abilities form part of the arguments by

Holland [2003] for building a consciousness [Browne and Tingley, 2006].

4. Results from Cognitive Robotics Experiments

Nature: Initially, a static rule-base was created manually including both a®erence

and e®erence rules but no direct state-action links, see Fig. 1 [Browne and
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Tingley, 2006]. Multiple states could a®ect an emotion and each of the ¯ve modeled

emotions could e®ect an action.

Superimposed runs of an explore task are shown in Fig. 2. A non-emotional

benchmark architecture produced almost identical paths when starting from the

same position, which is common in deterministic systems. Introducing randomness to

the controller was ine®ective as the robot made little forward progress. However,

when considering the paths generated by the emotional system, both runs were

completely di®erent, but equally e®ective— �90% exploration compared with �70%

for the benchmark system.

Nurture: The emotion analogues selected for this problem domain were: Happiness

(Pþ), Sadness (P�), Curiosity (Iþ), Anger (I�), Hope (Dþ), and Fear (D�). Where

each emotional signal is related to satisfying the need by a proportional (P), integral

(I) or derivative (D) relationship and may be appetitive (þ) or aversive (�). An LCS

is used to learn the e®ective use of emotions, i.e., best action for a given emotional

state. Again the task was to explore, initially in a simple domain. Experiments

showed that as the training progressed the area explored in a given time interval

increased, see Fig. 3.

Examining the rules produced showed plausible learning had occurred. The

autonomously identi¯ed ¯ttest rule learnt:

111 � If ðð18 ( Happiness ( 88Þ and ð6 ( Sadness ( 23Þ and
ð12 ( Curiosity ( 81Þ and ð17 ( Anger ( 85Þ and
ð17 ( Hope ( 85Þ and ð8 ( Fear ( 52ÞÞ fAction ¼ 1g

Fig. 1. An example of an emotion transformer and associated transformer.

Fig. 2. A non-emotional agent architecture exploring a complex domain for three minutes (left). An

emotional-based agent architecture exploring a complex domain for three minutes. Note the non-

deterministic nature of the two runs (right).
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This corresponds to the behavior: agent is in the open space, then go forward

slowly. As the motor actions were set arbitrarily, this suggests that the top range of

speeds were too fast for the domain leading to collisions with the walls.

Due to the accuracy-based nature of the LCS used, it also formed aversive rules.

The behavior to be most avoided is: if agent is trapped, then turn left fast (note that

trapped corresponds to low values from the ultrasonic sensors).

5. Discussion

Production rule-based systems have potential for both a®ective and e®ective learn-

ing, especially when internal reward is linked to satisfying identi¯ed needs. The

ability to reason on emotional states, including combinations of multiple emotions, is

essential for generating realistic behaviors. Furthermore, the ability to set emotions,

change emotions and form chains of rules adds to the temporal, including episodic,

learning capabilities.

It was noted that the control actions of the robot-emotions were similar to the

actions of conventional controllers. A simple analogy is that some emotions reacted

proportionally to the input signal, others built up over time (integrated) and others

reacted to the rate of change of a signal (di®erential). Proportional, integral and

derivative (PID) is a standard industrial control strategy. It is worth considering the

links to other conventional control strategies, such as ¯lter-based techniques (e.g.,

lead control), model-based control and adaptive control to determine if natural

emotions have similar actions that could be replicated arti¯cially.

6. Conclusion

Inspiration from concepts related to emotion is likely to signi¯cantly contribute to

cognitive systems when approaching conscious-like behavior. Speci¯cally, emotions

can set goals including balancing explore versus exploit, facilitate action in unknown

domains and modify existing behaviors, which can be shown in initially simple cog-

nitive robotics experiments. A need for predictive certainty coupled with emotional

communication is postulated to lead to an agent approaching conscious behaviors

when placing itself in an \out there" world.

Fig. 3. Plot of the map data from LCS iteration 4 (left) and map data from LCS iteration 9 (right).
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